образование интеграция реформа высший
Т. о., общая модель ФА равносильна гипотезе о ковариационной матрице, а именно о том, что ковариационная матрица представляется в виде суммы матрицы А = {aij} и диагональной матрицы L с 2 элементами s2i.
Процедура оценивания в ФА состоит из двух этапов: оценки факторной структуры – числа факторов, необходимого для объяснения корреляционной связи между величинами Xi, и факторной нагрузки, а затем оценки самих факторов по результатам наблюдения. Принципиальные трудности при интерпретации набора факторов состоят в том,
что при k > 1 ни факторные нагрузки, ни сами факторы не определяются однозначно, т.к. в уравнении (*) факторы fj могут быть заменены любым ортогональным преобразованием.
Это свойство модели используется в целях преобразования (вращения) факторов, которое выбирается так, чтобы наблюдаемые величины имели бы максимально возможные нагрузки на один фактор и минимальные нагрузки на остальные факторы. Существуют различные практические способы оценки факторных нагрузок, имеющие смысл в предположении, что Xi,…, Xn подчиняются многомерному нормальному распределению с ковариационной матрицей С = {сij}.Выделяется максимального правдоподобия метод, который приводит к единственным оценкам для cij, но для оценок aij даёт уравнения, которым удовлетворяет бесчисленное множество решений, одинаково хороших по статистическим свойствам.
Вместе с тем, в работе использовался корреляционный анализ – метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравнивались коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляция отражала лишь линейную зависимость величин, но не отражала их функциональной связности. Например, при вычислении коэффициента корреляции между величинами A = sin(x) и B = cos(x), он был близок к нулю, т.е. зависимость между величинами отсутствовала. Между тем, величины A и B были связаны между собой функционально по закону sin^2 (x) + cos^2 (x) = 1.
В обработке сигналов использовалась автокорреляционная функция (АКФ), которая определялась интегралом и ваимнокорреляционная функция (ВКФ).
,
,
Корреляция отражала лишь линейную зависимость величин, но не отражала их функциональной связности. Например, вычисление коэффициента корреляции между величинами A = sin(x) и B = cos(x), будет близок к нулю, т.е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону sin^2 (x) + cos^2 (x) = 1.
Измерение профессиональных интересов связано, преимущественно, с решением практических задач и индивидуального планирования самостоятельной работы студентов-бакалавров в процессе их подготовки к прохождению педагогической практики в школах, лицеях и колледжах города Ташкента. Такая подготовка носит личностно-ориентированный, эмпирический характер. Необходимо отметить, что при подготовке был осуществлен факторный анализ оценок теста профессиональных интересов, а также интеркорреляция между шкалами – показателями различных годов проведенных срезов.
Другое о образовании:
Индивидуальная работа с родителями
Индивидуальная работа с родителями и другими взрослыми членами семьи учащегося сложна и разнообразна. Индивидуальное общение, если оно продуманно построено учителем, как правило, результативно. Преимуществом индивидуальной работы является то, что, находясь наедине с учителем, родители откровеннее р ...
Обучение Швеции
В Швеции более 30 высших учебных заведений, в том числе 10 университетов (семь из них государственные). Два самых древних университета находятся в Упсале (основан в 1477) и Лунде (основан в 1666). В 1995 в Упсальском университете обучались 18 тыс. студентов, в Лундском и столичном Стокгольмском – п ...
Психологические особенности изменения картины мира у наркозависимых лиц
Наркомания сегодня выходит на одно из первых мест среди проблем, серьезно угрожающих физическому, социальному, а главное - духовному здоровью и благополучию нации. Уже не надо никому доказывать, что это явление в России становится не просто проблемой, а настоящим национальным бедствием. Наркомания ...