Реализация методических рекомендаций по обучению прикидке и оценке результатов вычислений в 5- 6 классах

Новая педагогика » Формирование вычислительной культуры учащихся 5-6 классов » Реализация методических рекомендаций по обучению прикидке и оценке результатов вычислений в 5- 6 классах

Страница 6

Пункт в)

Учитель. В этом пункте какие числа делим?

Ученик. Обыкновенные дроби.

Учитель. С чем сравниваем?

Ученик. С делимым.

Учитель. А мы с вами выяснили, что результат такого деления всегда больше или меньше делимого?

Ученик. Всегда больше! Поэтому

Пункт г)

Учитель. Какие числа делим?

Ученик. Смешанное число на правильную дробь.

Учитель. Такой случай аналогичен…

Ученик. Случаю деления натурального числа на правильную дробь, значит результат будет больше делимого, то есть больше, чем само смешанное число

Таким образом при дальнейшем решении задач ученикам будет легче заметить ошибку, так как они сумеют оценить правильность своего ответа, прикинув каким будет результат, зная что должно получатся в том или ином случае деления.

Фрагмент урока №6

Класс

: шестой

Тема

: «Свойства действий с рациональными числами»

Тип урока

: закрепление нового материала

Цель фрагмента

: формирования умения отыскания наиболее короткого и удобного пути вычисления, основываясь на свойствах рациональных чисел

Учебник

: Виленкин Н.Я и другие

На тему «Свойства действий с рациональными числами» отводится три часа. Этот второй урок по данной теме. На первом уроке были освещены основные свойства действий с рациональными числами и выполнены вводные упражнения на применение этих свойств. На втором уроке планируется выполнение тренировочных упражнений, некоторые из которых позволяют формировать вычислительную культуру рациональных вычислений, пользуясь уже известными свойствами.

После повторения свойств действий с рациональными числами и определения рационального числа вспоминаем, что эти свойств призваны прежде всего «упростить нам жизнь», делать наши вычисления на порядок проще. Но для этого нужно быть очень внимательным, и перед тем как приступать к вычислениям, посмотреть, а нельзя ли что-нибудь упростить.

Среди номеров, выбранных для классной работы, учитель предлагает выполнить номер 1206.

№1206. Выбрав удобный порядок вычислений, найдите значения выражений:

а)

б)

в)

Учитель. В каждом из пунктов встречаются вперемешку действия с десятичными, обыкновенными дробями и смешанными числами. Удобно ли нам будет выполнять действия «в лоб», последовательно складывать или вычитать, находя при этом общий знаменатель и т.п.?

Ученик. Нет! Применив распределительное свойство, можно поменять местами пары чисел таким образом, чтобы в одно скобке оказались десятичные дроби, а далее следовали обыкновенные дроби или смешанные числа с одинаковыми знаменателями (или наоборот).

Пункт а)

Это самый простой пример, школьники без затруднений находят пары «удобных чисел» и выполняют необходимые действия.

Пункт б)

В этом примере на первый взгляд только одна «удобная пара», но в процессе решения можно заметить появление еще одной.

Пункт в)

Учитель. Как проще выполнять действия в этом примере?

Ученик. Все дроби со знаменателем 14 запишем сначала, а затем – все дроби со знаменателем 12.

Таким образом на протяжении всей темы, ученики учатся максимально (насколько это возможно) упрощать сначала числовые, а затем буквенные выражения, что приводит к упрощению вычислений и меньшим затратам времени и сил.

Фрагмент урока №7

Класс

: пятый

Тема урока

: «Проценты»

Тип урока:

комбинированный урок

Цели урока

: наглядно, используя соревновательный момент, показать более короткий способ нахождения «красивого процента» от числа

Учебник:

Виленкин Н.Я и другие

Всего на данную тему отводится 5–6 часов. Это второй урок по теме: «Проценты».

На первом уроке было введено понятие процента и представление его в виде десятичной дроби и, наоборот, представление дроби в виде процента, находили 1% от числа и число по его одному проценту.

Страницы: 1 2 3 4 5 6 7 8

Другое о образовании:

Экологическое сознание как область междисциплинарных исследований
Начало ХХI века четко обозначило тенденцию, в связи с которой стало ясно, что изменения в природной среде имеют не только биосферное значение, но и приобретают огромную социальную значимость. Современная экологическая ситуация стала формой проявления двух стихий, пересечением социальных и естествен ...

Нравственное развитие детей в отечественной и зарубежной психологии
В литературе обычно указывается на роль сензитивных периодов в интеллектуальном развитии, но есть основания говорить о сензитивных периодах нравственного развития ребенка. Как отмечал Л.С. Выготский, «нет и не может быть другого критерия для определения конкретных эпох детского развития или возраст ...

Значение преподавания математики для формирования научного мировоззрения школьников
Под мировоззрением понимают систему взглядов на окружающий нас мир, на возможность его познания человеком, на отношение к обществу и труду. Таким образом, мировоззрение представит собой целый комплекс представлений о реальном мире, о его познаваемости, об отношении человека к труду, к другим людям, ...

Меню сайта

Copyright © 2024 - All Rights Reserved - www.edakam.ru