Реализация методических рекомендаций по обучению прикидке и оценке результатов вычислений в 5- 6 классах

Новая педагогика » Формирование вычислительной культуры учащихся 5-6 классов » Реализация методических рекомендаций по обучению прикидке и оценке результатов вычислений в 5- 6 классах

Страница 4

Класс

: пятый

Тема урока

: «Деление на десятичную дробь»

Тип урока:

применения знаний и умений

Цели фрагмента:

вспомнить правила деления и умножения на десятичную дробь, а также связать умножение на десятичную дробь с правилом нахождения дроби от числа, выполнив задание, не прибегая к вычислениям

Учебник:

Виленкин Н.Я и другие

Всего на данную тему отводится 7 часов. Это третий 4 урок по теме: «Деление на десятичную дробь».

На первых трех уроках были разобраны правила деления на десятичную дробь и деление на 0,1; 0,01; 0,001, а также закреплялись эти правила путем выполнения вводных, тренировочных упражнений. Была написана самостоятельная работа на проверку навыка применения этих правил.

На этом уроке решаются задачи с применением правила деления на десятичную дробь, а также задачи на повторение.

На этапе решения задач учащимся предложено решить задачу на повторение нахождения числа по его дроби и дроби от числа.

№1481. Первое число равно 6,3 и составляет второго числа. Третье число составляет второго. Найдите второе и третье числа.

Решая данную задачу, вспоминаем как находить число по его дроби и дробь от числа. Последнее нужно для выполнения следующего задания.

Учитель. Как найти дробь от числа?

Ученик. Число умножить на числитель дроби и разделить на знаменатель.

Учитель. А как найти 0,5 числа 91?

Ученик. Сначала представить число 0,5 в виде обыкновенной дроби .

А затем =45,5

Учитель. А попробуйте умножить 0,5 на 91, какой ответ получим?

Ученик. Такой же!

Учитель. Делаем вывод: число умножить на десятичную дробь – это тоже самое, что умножить его на числитель и разделить на знаменатель (10,100,1000 и т.п.)

=После этого учитель предлагает выполнить номер 1472.

№1472. Сравните, не вычисляя, значений выражений:

а) и ; б) и

Пункт а)

Учитель. Мы только что с вами сказали, что для того, чтобы число умножить на десятичную дробь что нужно сделать?

Ученик. Умножить число на числитель и разделить на знаменатель.

. Ставим знак равенства.

Пункт б)

Учитель. Для того чтобы нам разобраться с пунктом б), нам необходимо вспомнить какое правило?

Ученик. Правило умножения десятичных дробей.

Для того, чтобы умножить десятичные дроби нужно:

1) умножить, не обращая внимания на запятую;

Учитель. Смотрим на выражение, стоящее справа, соответствует ли оно первому пункту правила умножения?

Ученик. Да, так как, чтобы умножить 0,084 на 0,5, нужно сначала умножить 84 на 5.

Учитель. А дальше что необходимо сделать по правилу?

Ученик. 2) Отделить столько знаков, сколько в обоих множителях вместе.

Учитель. Сколько знаков будем отделять в данном случае?

Ученик. Четыре.

Учитель. В какую сторону будем двигать запятую?

Ученик. Влево на 4 знака

Учитель. А какое действие позволяет нам передвинуть запятую влево?

Ученик. Деление на 10, 100, 100, 10000,…

Учитель. В данном случае на сколько надо делить?

Ученик. На число с четырьмя нулями, то есть на 10000.

Учитель. Значит между выражениями в пункте б) какой знак можно поставить?

Ученик. Знак равенства

Выводы: Пункт а) очень пригодится при изучении темы проценты, дети на основе уже разобранного таким образом материала, легко смогут заметить, что найти процент от числа – это тоже самое, что умножить число на десятичную дробь, соответствующую этому проценту.

Фрагмент урока №5

Класс:

шестой

Тема урока:

«Деление дробей»

Тип урока

Страницы: 1 2 3 4 5 6 7 8

Другое о образовании:

Понятие и своеобразие детского изобразительного творчества в современной психолого-педагогической литературе
Формирование творческой личности - одна из важных задач педагогической теории и практики на современном этапе. Решение ее должно начаться уже в дошкольном детстве, ведь способность к творчеству является специфической особенностью человека, которая выделяет его из мира животных, дает возможность не ...

Особенности активизации учебно-познавательной деятельности при обучении природоведению
Все перечисленные выше особенности познавательной сферы младшего школьника накладывают определенный отпечаток на учебную деятельность учащихся младших классов. Эффективность обучения находится в прямой зависимости от уровня активности ученика в этом процессе. Активность ученика в этом процессе обуч ...

Причины возникновения нарушений речи
Причина нарушений речи – воздействие на организм внешнего или внутреннего фактора или их взаимодействие, которые определяют специфику речевого расстройства, и без которых последнее не может возникнуть. Причинами возникновения нарушений речи могут быть: I. Врождённые (травмы, полученные во внутриутр ...

Меню сайта

Copyright © 2018 - All Rights Reserved - www.edakam.ru