Критика реализации аксиоматического подхода у А.В. Погорелова

Страница 1

Одно из направлений анализа задается вопросом: « На сколько точно и полно реализован аксиоматический подход. Основанием для анализа здесь является сравнение логики построения учебного текста с идеальной моделью. Идеальная модель описана в параграфе 1.3.

Рассмотрим логику построения учебного курса. Можно говорить о цикличности построения учебника. Содержательный материал начинается с более легкого для понимания, прямых, точек, углов на плоскости, и переходит на «составные» понятия в пространстве, понятия, которые опираются на уже известное школьнику. Первым циклом, выделенным у А. В. Погорелова, является планиметрия. Второй раздел, стереометрия, можно назвать вторым циклом, в котором происходит усложнения материала за счет добавления еще одной координаты.

Покажем теперь, насколько не адекватно лобовое следование аксиоматическому подходу в учебном тексте. В частности, методист И. Е. Феоктистов обсуждает проблему введения аксиоматического метода, говоря, что «Для учащихся аксиоматический метод выступает как форма предъявления учебного требования: доказывать все предложения, опираясь на аксиомы и ранее доказанные теоремы». Методическое значение такого требования состоит в формировании у учащихся психологической установки доказывать все, в том числе и наглядно очевидные факты. И. Е. Феоктистов, восстанавливая замысел А. В. Погорелова, допускает, что это могло быть сделано из предположения, что такая установка ведет к развитию у учащихся устойчивого познавательного интереса.

На практике же виден обратный процесс: «требование доказывать очевидное приводит к быстрому снижению интереса к предмету, к возникновению и закреплению в сознании учащихся неверного представления о геометрии как об очень занудной школьной дисциплине».

Ощущение того, что геометрия занимается чем-то противоестественным, существенно влияет на учебную установку школьника. Примером такой не естественной ситуации может служить фраза ученика 6 класса, ставшая ответом на вопрос родителей «Чем занимались на уроке геометрии?» школьник ответил: «Учительница нарисовала на доске два одинаковых треугольника, и зачем – то целый урок доказывала, что они равны». Этот пример показывает, что школьник не способен понять суть доказательства и перенести его как способ на другой пример, он, в своих решениях, следует показанной ему форме.

Можно выделить также проблему не последовательности изложения материала. Эту проблему описывают прежде всего студенты, которые критикуя учебник относятся к нему еще не с точки зрения специалистов, а с точки зрения школьников. При этом последовательным они считают такое изложение материала, когда под названием параграфа, например «Многоугольник», пишется все про многоугольник.

Например, Н. В. Чагина в своей работе пишет «В пятом и шестом пунктах (первой главы) рассматриваются полуплоскости и полупрямая. Ранее рассматривается угол, откладывания отрезков и углов. Затем автор переходит к треугольникам, еще не рассмотрев смежные и вертикальные углы, к которым он обращается только в следующем параграфе». Интуитивно чувствуя разрыв, Н. В. Чагина называет это непоследовательностью изложения материала, «что может привести к затрудненному восприятию материала».

Студентам 4 курса удается выделить несколько спорных мест в предложенном математическом материале.

К. А. Баженова в своей работе рассматривает определение угла приводимого А. В. Погореловым, выделяя в нем ограничения.

А. В. Погорелов вводит определение угла как «геометрической фигуры, состоящей из точки (вершины) и двух исходящих из нее лучей (сторон угла)». При таком определении делая несложные логические операции получаем, что «в треугольнике нет углов… Или здесь угол имеет другое определение, о котором «забыл» упомянуть автор. Или стороны углов могут быть отрезки?»

Кроме того в учебнике А. В. Погорелова отсутствуют некоторые теоретические положения которые так или иначе «всплывают» в процессе преподавания. Многие учителя включают в свои уроки, формально проводимые по учебнику А. В. Погорелова, пропущенные автором теоретические положения, например: понятие о вневписанных окружностях, теоремы о величине угла между хордами окружности и между двумя секущими окружности, теоремы о пропорциональности отрезков секущих, отрезков секущих и касательной к окружности, теорему тангенсов, теорему об угле между высотами параллелограмма, проведенными из одной вершины, и многое другое.

Полноту теории обсуждают студенты 3 и 4 курса, замечая не корректное введение понятий.

Одним из основных объектов для критики у четвертого курса стал тот факт, что понятие геометрии вводится через понятие геометрической фигуры, которое не введено, и совсем даже не тривиально. А. В. Погорелов пишет на первой странице учебника «Геометрия – эта наука о свойствах геометрических фигур». При первом прочтении такое определение вызывает непонимание «как можно определять неизвестное через неизвестное?». Попробуем разобраться.

Страницы: 1 2 3 4

Другое о образовании:

Вариативный подход в обучении химии
Разработка учебных курсов вариативного компонента учебного плана, как и любого учебного предмета, предполагает определение его содержания и структуры. Для решения этой задачи, прежде всего, необходимо выявить систему положений, определяющих роль оснований, учет которых позволит отобрать учебный мат ...

Понятие и сущность способностей
Способности изучают различные науки - философия, социология, медицина и другие. Но ни одна из них не рассматривает так глубоко и разносторонне проблему способностей, как психология. Несмотря на это, термин «способности» многими психологами трактуется неоднозначно. Если рассматривать всевозможные ва ...

Значение изобразительной деятельности в коррекционной работе с детьми с ЗПР
Коррекционная работа посредством изодеятельности должна учитывать качественное своеобразие детей, связанное с недоразвитием их познавательной деятельности. Поэтому одна из задач обучения детей с ЗПР – насыщение их рисунков предметным, смысловым содержанием. У таких детей особую роль играет эмоциона ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.edakam.ru