Критика реализации аксиоматического подхода у А.В. Погорелова

Страница 1

Одно из направлений анализа задается вопросом: « На сколько точно и полно реализован аксиоматический подход. Основанием для анализа здесь является сравнение логики построения учебного текста с идеальной моделью. Идеальная модель описана в параграфе 1.3.

Рассмотрим логику построения учебного курса. Можно говорить о цикличности построения учебника. Содержательный материал начинается с более легкого для понимания, прямых, точек, углов на плоскости, и переходит на «составные» понятия в пространстве, понятия, которые опираются на уже известное школьнику. Первым циклом, выделенным у А. В. Погорелова, является планиметрия. Второй раздел, стереометрия, можно назвать вторым циклом, в котором происходит усложнения материала за счет добавления еще одной координаты.

Покажем теперь, насколько не адекватно лобовое следование аксиоматическому подходу в учебном тексте. В частности, методист И. Е. Феоктистов обсуждает проблему введения аксиоматического метода, говоря, что «Для учащихся аксиоматический метод выступает как форма предъявления учебного требования: доказывать все предложения, опираясь на аксиомы и ранее доказанные теоремы». Методическое значение такого требования состоит в формировании у учащихся психологической установки доказывать все, в том числе и наглядно очевидные факты. И. Е. Феоктистов, восстанавливая замысел А. В. Погорелова, допускает, что это могло быть сделано из предположения, что такая установка ведет к развитию у учащихся устойчивого познавательного интереса.

На практике же виден обратный процесс: «требование доказывать очевидное приводит к быстрому снижению интереса к предмету, к возникновению и закреплению в сознании учащихся неверного представления о геометрии как об очень занудной школьной дисциплине».

Ощущение того, что геометрия занимается чем-то противоестественным, существенно влияет на учебную установку школьника. Примером такой не естественной ситуации может служить фраза ученика 6 класса, ставшая ответом на вопрос родителей «Чем занимались на уроке геометрии?» школьник ответил: «Учительница нарисовала на доске два одинаковых треугольника, и зачем – то целый урок доказывала, что они равны». Этот пример показывает, что школьник не способен понять суть доказательства и перенести его как способ на другой пример, он, в своих решениях, следует показанной ему форме.

Можно выделить также проблему не последовательности изложения материала. Эту проблему описывают прежде всего студенты, которые критикуя учебник относятся к нему еще не с точки зрения специалистов, а с точки зрения школьников. При этом последовательным они считают такое изложение материала, когда под названием параграфа, например «Многоугольник», пишется все про многоугольник.

Например, Н. В. Чагина в своей работе пишет «В пятом и шестом пунктах (первой главы) рассматриваются полуплоскости и полупрямая. Ранее рассматривается угол, откладывания отрезков и углов. Затем автор переходит к треугольникам, еще не рассмотрев смежные и вертикальные углы, к которым он обращается только в следующем параграфе». Интуитивно чувствуя разрыв, Н. В. Чагина называет это непоследовательностью изложения материала, «что может привести к затрудненному восприятию материала».

Студентам 4 курса удается выделить несколько спорных мест в предложенном математическом материале.

К. А. Баженова в своей работе рассматривает определение угла приводимого А. В. Погореловым, выделяя в нем ограничения.

А. В. Погорелов вводит определение угла как «геометрической фигуры, состоящей из точки (вершины) и двух исходящих из нее лучей (сторон угла)». При таком определении делая несложные логические операции получаем, что «в треугольнике нет углов… Или здесь угол имеет другое определение, о котором «забыл» упомянуть автор. Или стороны углов могут быть отрезки?»

Кроме того в учебнике А. В. Погорелова отсутствуют некоторые теоретические положения которые так или иначе «всплывают» в процессе преподавания. Многие учителя включают в свои уроки, формально проводимые по учебнику А. В. Погорелова, пропущенные автором теоретические положения, например: понятие о вневписанных окружностях, теоремы о величине угла между хордами окружности и между двумя секущими окружности, теоремы о пропорциональности отрезков секущих, отрезков секущих и касательной к окружности, теорему тангенсов, теорему об угле между высотами параллелограмма, проведенными из одной вершины, и многое другое.

Полноту теории обсуждают студенты 3 и 4 курса, замечая не корректное введение понятий.

Одним из основных объектов для критики у четвертого курса стал тот факт, что понятие геометрии вводится через понятие геометрической фигуры, которое не введено, и совсем даже не тривиально. А. В. Погорелов пишет на первой странице учебника «Геометрия – эта наука о свойствах геометрических фигур». При первом прочтении такое определение вызывает непонимание «как можно определять неизвестное через неизвестное?». Попробуем разобраться.

Страницы: 1 2 3 4

Другое о образовании:

Умение рационализировать вычисления
Рационализация вычислений требует от учащихся, помимо знаний всех основных свойств арифметических действий над числами, элементарного желания «упростить себе жизнь», затратить на выполнение, громоздкого по виду, задания как можно меньше времени, увидеть самый короткий, но от этого не менее правильн ...

Пути и средства сенсорного воспитания детей с умеренной и тяжелой интеллектуальной недостаточностью
Сенсорное развитие осуществляется на основе обеспечения взаимодействия чувственного отражения и моторных (двигательных) компонентов психической деятельности. Приоритетные направления работы по развитию сенсомоторной сферы у детей с тяжелыми и множественными нарушениями развития определяются с учето ...

Воспитание школьников на уроках математики посредством сообщения им сведений из истории науки
Среди целей преподавания математики в школе можно выделить одну - формирование у учащихся представлений о математике как части общечеловеческой культуры. Учителя математики часто считают ее не главной и не уделяют должного внимания соответствующей работе на уроке. Практика работы с историей математ ...

Меню сайта

Copyright © 2018 - All Rights Reserved - www.edakam.ru