Идея относительности в кинематике

Страница 3

Покажем, как были получены эти результаты, проведя решение задачи.

Решение. Для решения задачи используем классический закон преобразования (сложения) скоростей: скорость тела в неподвижной системе отсчета равна сумме скорости тела в подвижной системе отсчета и скорости самой подвижной системы отсчета: . Движение происходит вдоль оси ОХ и соответственно закон преобразования (сложения) скоростей записывается через проекции скоростей на ось ОХ: .

1. В системе отсчета, связанной с Землей, скорости заданы в условии задачи и их проекции на ось ОХ соответственно равны: ; м/с; м/с.

2. В системе отсчета, связанной с мотоциклистом:

; м/с = – 20 м/с;

; м/с – 20 м/с = – 15 м/с;

; м/с – 20 м/с = 0.

3. В системе отсчета, связанной с велосипедистом:

; - 5 м/с = – 5 м/с;

; м/с – 5 м/с = 15 м/с.

Сведения в таблицу полученных результатов дает наглядное представление об относительности скорости, о роли системы отсчета в определении последней.

Целесообразно показать, что все системы отсчета в кинематике равноправны, но следует выбирать такую систему отсчета, которая приводит к рациональному решению задачи. Для этого целесообразно решить одну и ту же задачу в разных системах отсчета.

Задача.

Тело брошено вертикально вверх со скоростью . Когда тело достигает верхней точки траектории, из того же места и с той же скоростью вертикально вверх брошено второе тело. Через сколько времени от момента бросания второго тела произойдет встреча этих тел?

Задачу решают в системе отсчета, связанной с Землей, и в системе отсчета, связанной с одним из тел.

Решение 1. За начало отсчета координаты принимают место бросания тел на Земле. Ось OY направляют вертикально вверх. За начало отсчета времени принимают момент бросания первого тела (рис. 1).

Рис. 1

Записывают уравнение движения для первого тела:

; ; ; ; .

Уравнение координаты для первого тела:

,

где – координата первого тела в любой, произвольный момент времени.

Страницы: 1 2 3 4 5

Другое о образовании:

Система быстрого счёта по Я. Трахтенбергу
Профессор Цюрихского математического института Яков Трахтенберг в конце 40-х годов он организовал в Цюрихе свой Математический институт – единственное в своём роде учебное заведение, где дети и взрослые учились и переучивались считать по его методу, достигая поразительных успехов. С помощью своего ...

Анализ программного материала по математике общеобразовательной специальной школы для детей с нарушением слуха
Математике в структуре начального специального обучения отводится важная роль как учебному предмету, не только формирующему представления, но и создающему условия для развития логического мышления и практической реализации знаний в повседневной жизни. В личностно-ориентированном обучении математике ...

Развитие творческих способностей через обучение решению текстовых задач
Большие возможности для воспитания мировоззрения представляют текстовые задачи. Не останавливаясь на неоднократно отмечавшемся значении таких задач, как простейшей, но достаточно четкой модели применения математики к изучению действительности, в которой содержится три характерных момента: перевод р ...

Меню сайта

Copyright © 2019 - All Rights Reserved - www.edakam.ru