Уравнения колебания струны

Будем считать, что струна обладает постоянной линейной плотностью r и растянута силой натяжения P. Направление оси x выберем вдоль положения равновесия струны, через y обозначим поперечное отклонение в точке x в момент времени t. Предполагается, что угол наклона ¶y/¶x кривой, образованный струной в любой момент времени t, настолько мал, что изменением натяжения можно пренебречь. При этих условиях уравнением движения элемента dx будет

rdx ¶2y/¶t2 =dPsin(j) (5.1)

где j - угол наклона касательной относительно оси x. Действительно, правая часть представляет собой разность проекций в направлении y натяжения на обоих концах элемента. На основании только что сделанного предположения можно положить

sinj < tg j = ¶y/¶ x (5.1')

так что уравнение (1) можно переписать

¶2y/¶t2=V2 ¶2y/¶t2 (5.2)

где V2=P/r, где V – скорость. Кинетическая энергия любого участка струны выражается интегралом

T=1/2 ròy'2dx (5.3)

взятым в соответствующих пределах. Потенциальную энергию можно вычислить двумя способами: 1) можно представить, что струна перемещается из состояния покоя в положении равновесия, в состояние покоя в любом другом заданном положении при помощи приложенных к ней поперечных сил. Для простоты предполагаем, что на любой стадии этого процесса все ординаты находятся в постоянном отношении (K) к своему конечному значению y, так что последовательные формы струны отличаются только по амплитудам силы, которая должна быть приложена к элементу dx, для того чтобы уравновесить натяжение на его концах, есть

-¶/¶x (Psinj)dx

синусу j следует положение равное K¶y/¶x при увеличении K на dx приращение смещения равно ydK. Полная работа, выполненная над этим элементом, поэтому будет равна:

-Pyy" dx 0ò1 Kdk= -1/2 Pyy"dx (5.4)

а потенциальная энергия

f=-1/2 P òyy" dx (5.5)

Пользуясь вторым методом, мы вычислим работу, произведённую при растяжении струны против натяжения P. Увеличение длины элемента dx приблизительно равно

Ö1+y'2 dx - dx=1/2 y'2dx (5.6)

так что

f=1/2 P'òy'2dx (5.7)

Эти выражения дают одинаковые результаты, когда интегрирование выполнено по всей возможной длине струны. Действительно при интегрировании по частям получим:

-òyy''dx= -[yy']+òy'2dx (5.8)

Первый член справа относится к значениям на пределах интегрирования струны. Он исчезает на концах возможного участка, т.к. здесь y равно нулю.

Другое о образовании:

Цели, задачи, методы, база исследования и организация практической работы по изучению мотивации старших дошкольников
Мотивационная готовность предполагает наличие у детей желания не просто пойти в школу, но учиться, определенные обязанности, связанные с их новым статусом, с позицией в системе социальных отношений - позицией школьника. Сформированность этой внутренней позиции - одна из важнейших составляющих мотив ...

Возможности применения социометрии в группе дошкольников
Личность, группа, коллектив, общество - явления, которые взаимосвязаны логикой развития человечества. Поэтому личность человека нельзя рассматривать вне того социального контекста, органической подсистемой которого она является. Между тем социальная среда состоит из различных элементов, играющих не ...

Сравнительный анализ результатов констатирующего и контрольного этапов исследования
Заключительным (контрольным) этапом экспериментальной работы стало повторное наблюдение за развитием музыкального восприятия дошкольников двух групп. Наблюдение осуществлялось по той же схеме, критерии и показатели музыкального восприятия дошкольников остались без изменений. Результаты были обработ ...

Меню сайта

Copyright © 2021 - All Rights Reserved - www.edakam.ru