Физика колебаний. Свободные колебания

Новая педагогика » Межпредметные связи физики и музыки » Физика колебаний. Свободные колебания

Страница 2

½aq¢²+f=const (3.6)

при условии, что система свободна от действия внешних сил. Значение const, количественно, определяется начальными условиями. Если продифференцировать это уравнение по t и почленно поделить на q¢ то получим

aq¢¢+½(da/dq)q¢²+df/dq=0 (3.7)

Это выражение можно рассматривать как уравнение свободного движения системы, из которого исключены неизвестные реакции между её частями. Для случая малых колебаний уравнение сильно упрощается. Для существования положения равновесия уравнение должно удовлетворяться при q=const.Это требует выполнения

df/dq=0 (3.8)

значит, равновесная конфигурация характеризуется тем, что при малых отклонениях от положения равновесия потенциальная энергия «стационарна». Прибавляя или отнимая некоторую константу, можно выбирать q т.о., чтобы оно обращалась в ноль при рассматриваемой нами равновесной конфигурации; тогда, разлагая в степенной ряд по малой величине q, имеем

f=const+½cq²+… (3.9)

Ввиду стационарности f в положении равновесия, в разложении отсутствует член с первой степенью q. Const=C>0, если равновесная конфигурация устойчива, и f имеет минимум. Её можно назвать «коэффициентом устойчивости». Подставив в (3.7) уравнение (3.9) и опустив члены второго порядка относительно q и q′ получим :

aq¢¢+Cq=0 (3.10)

где a теперь можно считать постоянной величиной, имеющей значение, соответствующее конфигурации равновесия.

C/a=w² (3.10')

и следовательно

q=Ccos((wt+j) (3.11)

_т.е. гармоническая функция и

n=1/2pÖC/a (3.11¢)

Далее, поскольку смещение от положения равновесия любой части системы при её движении по своей траектории пропорционально q (в приведённых выше обозначениях оно равно aq), мы видим, что каждая частица совершает гармонические колебания с указанной частотой и отдельные частицы движутся синхронно, одновременно проходя через средние положения. Кроме того, амплитуды колебаний разных частиц находятся в постоянном отношении друг к другу; произвольны только абсолютная величина амплитуды и фаза колебания; они зависят от заданных начальных условий. Кинетическая и потенциальная энергии будут соответственно равны:

T=½aq¢²=½n²aC²sin²(wt+j) (3.12)

f=½cq²=½cC²cos²(wt+j) (3.13)

а их сумма

T+f=½w²aC²+½cC² (3.14)

Средние значения sin²(wt+j)=cos²(wt+j)=½, поэтому энергия системы в среднем является наполовину кинетической и наполовину потенциальной. Для приложения теории к частным случаям требуется только вычислить коэффициенты a и c, причём (в задачах механики) вычисление последнего обычно более сложно. В случае тела, подвешенного на проволоке и совершающего крутильные колебания вокруг оси проволоки, a-момент инерции относительно этой оси, а c-коэффициент крутильного момента, т.е. cq-это крутильный момент, возникающий при повороте тела на угол q.

Если в задаче о массе, подвешенной на пружине предположить, что вертикальное перемещение любой точки пружины пропорционально расстоянию z от точки подвеса при отсутствии растяжения, то кинетическая энергия определяется следующим выражением:

2T=Mq¢²+0òl(z/l)²q¢²rdz=(M+1/3rl)q¢² (3.15)

где r - линейная плотность, l - длина пружины в нерастянутом состоянии и q смещение груза.

Страницы: 1 2 

Другое о образовании:

Изучение мотивации учения младших школьников в 1классе
Вопросы анкеты составлены таким образом, чтобы выявить наличие трех видов мотивов учения: внутренних, внешних положительных и внешних отрицательных. На выявление внутренних мотивов направлены вопросы №№ 3, 4, 8. На выявление внешних положительных мотивов направлены вопросы №№ 1, 5, 9. На выявление ...

Особенности нравственного развития младших школьников
Начальное обучение в настоящее время строится таким образом, что развивает у школьников познавательные способности; вырабатывает навыки активного овладение учебным материалом, ведет к объединению полученных знаний в целостную систему, направленную на осознание окружающего мира. Развитие мышления, о ...

Особенности двигательного развития детей
Движение для ребенка – это универсальное проявление жизнедеятельности, на различные раздражения он реагирует прежде всего движением (например, отдергивание руки при ожоге пальца, сосательные движения младенцев при раздражении губ и щек и т.д.). Вместе с тем от рецепторов мышц, сухожилий, суставов, ...

Меню сайта

Copyright © 2025 - All Rights Reserved - www.edakam.ru