Основные периоды и этапы становления методики преподавания математики в России

Новая педагогика » Изучение истории становления и развития методики преподавания математики в России » Основные периоды и этапы становления методики преподавания математики в России

Страница 1

Ряд исследователей, таких как Ю.М. Колягин, Т.С. Полякова, О.А. Саввина, О.В. Тарасова, Р.С. Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И.К. Андронова и Р.С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.

Так, например, Ю.М. Колягин в своем исследовании описывает развитие математического образования на фоне эволюции всей отечественной образовательной системы, в большинстве случаев обращаясь к оценке событий с государственных позиций. Это подтверждается тем, что в приложении к книге содержатся биографические сведения о деятелях науки, просвещения и культуры России в двенадцати сводных таблицах, разбитых хронологическими рамками:

1. 1682 -1725 гг. (Петр I);

2. 1725 - 1740 гг. (Екатерина I, Петр II, Анна Иоановна);

3. 1741-1762 гг. (Елизавета Петровна, Петр III);

4. 1762 - 1801 гг. (Екатерина II, Павел I);

5. 1801 – 1825 гг. (Александр I);

6. 1825 -1855 гг. (Николай I);

7. 1855 – 1881 гг (Александр II);

8. 1881 – 1894 гг. (Александр III);

9. 1894 – 1918 гг. (Николай II);

10.1918 – 1930 гг. (Советский период);

11.1931 – 1965 гг. (Советский период);

12.1965 – 1999 гг. (Советский период).

В монографии Т.С. Поляковой приводится периодизация школьного математического образования, начиная со времени Киевской Руси (X-XI вв.) и до наших дней. Она отмечает следующие этапы развития математического образования:

1. Зарождение математического образования (со времени Киевской Руси (X – XI вв.) – XVII в.);

2. Становление отечественного математического образования (с указа Петра I об основании математико – навигацкой школы (1701 г.) до 1804 г.);

3. Создание российской модели классической системы школьного математического образования (образовательные реформы 1804 г. – вторая половина XIX в.);

4. Реформация классической системы школьного математического образования (60 – 70-е гг. XIX в. – 1917 г.);

5. Поиск новых моделей математического образования (1918 -1931 гг.);

6. Реставрация отечественных традиций, создание советской модели классического школьного математического образования (1931 – 1964 гг.);

7. Реформация советской модели классической системы школьного математического образования (1964 – 1982 гг.);

8. Период контрреформации (1982 – 1990 гг.);

9. Современный этап развития школьного математического образования (начался с 1991 – 1992 гг. и до настоящего времени).

В исследовании О.А. Саввиной определено восемь периодов становления и развития обучения высшей математике в отечественной средней школе:

1. Первый период (вторая треть XVIII в. – 1845 гг.) – характеризуется тем, что вопросы высшей математики включались в преподавание стихийно. Обучение высшей математике в школе не носило массового характера. На данном этапе были созданы первые учебники по высшей математике на русском языке, в них формировалась лексика и терминологический аппарат понятий аналитической геометрии и анализа бесконечно малых.

2. Второй период (1846 – 1906 гг.) – ознаменовался стабилизацией математического образования и появлением общегосударственных программ, но вместе с тем – отсутствием в программах гимназий элементов высшей математики. В этот же период ослабляются позиции аналитической геометрии в курсе кадетского корпуса (военной гимназии) и реальных училищ.

3. Третий период (1907 – 1917 гг.) – период «парадного марша» элементов высшей математики в среднюю школу. В 1907 г. элементы высшей математики вошли в программу реального училища, в 1911 г. основами анализа бесконечно малых пополнился курс кадетского корпуса, а с 1914 г. сведения из аналитической геометрии заняли почетное место в программе коммерческого училища. Эти изменения не коснулись лишь классической гимназии, все попытки реформирования содержания математического образования в ней, остались только в проектах. Следует отметить, что в это время был заложен прочный фундамент методики преподавания высшей математики в средней школе (труды А.Н. Остроградского, М.Г. Попупреженко, П.А., П.А. Самохвалова, Ф.В. Филипповича, Д.М. Синцова и др.).

Страницы: 1 2 3 4

Другое о образовании:

Виды лепки, используемые в специальной коррекционной школе
Взаимосвязь занятий лепкой с предметами общеобразовательного цикла осуществляется достаточно отчётливо на каждом уроке. Особенно заметна связь занятий по лепке с уроками рисования. Это во многом определяет структуру занятий. Так же примерно, как и на уроках рисования, здесь можно выделить следующие ...

Образовательное значение критики школьного учебника в обучении педагогов математиков
Одной из важных задач образования педагога математика является становление проектного мышления. Под проектным мышлением мы понимаем такое мышление, которое создает образ будущей деятельности и тех средств, в том числе и еще не существующих, которые необходимы для того, что бы эта деятельность состо ...

Особенности формирования общения у детей с умственной отсталостью
По мнению Е.Н. Винарской функциональная способность нервных клеток проекционных полей коры у детей с умственной отсталостью сравнительно сохранна. Поэтому у детей с умственной отсталостью относительно сформирован эмоциональный аспект коммуникативно-познавательной способности, т.е. могут быть развит ...

Меню сайта

Copyright © 2018 - All Rights Reserved - www.edakam.ru