Методические рекомендации по обучению прикидке и оценке результатов вычислений в 5–6 классах

Новая педагогика » Формирование вычислительной культуры учащихся 5-6 классов » Методические рекомендации по обучению прикидке и оценке результатов вычислений в 5–6 классах

Страница 2

На протяжении всех лет обучения обращается особое внимание учащихся на необходимость предварительного планирования вычислительной работы, а лишь затем ее безошибочное осуществление.

Специфика математических алгоритмов состоит в том, что многие из них базируются на сложных навыках. Например, алгоритм сложения двух дробей с разными знаменателями основан на умении находить наибольшее общее кратное двух чисел, навыке применения основного свойства дроби для приведения дробей к общему знаменателю, навыке сложения двух дробей с одинаковыми знаменателями. В свою очередь каждый из них имеет сложную структуру, и несформированность какого-либо одного звена в этой системе является причиной несформированности более общего навыка сложения дробей с разными знаменателями. Учитывая сложную структуру многих математических алгоритмов, учителю следует с особым вниманием относиться к соблюдению основных методических требований к их формированию. Известно, что умения и навыки быстрее усваиваются и дольше сохраняются, если их формировать на сознательной основе, а поэтому желательно, чтобы формированию алгоритма, выработке соответствующего навыка предшествовало понимание сути выполняемого действия. Например, умножению десятичных дробей может предшествовать умножение на , где n – натуральное число, после чего умножение десятичных дробей сводится к умножению натуральных чисел.

Согласно одной из психологических теорий, формирование навыков происходит поэтапно, на первом этапе – овладение умением, а затем – доведение его до автоматизма. С учетом этого и должна строиться методика обучения. Для успешного овладения умением необходимо четкое выделение алгоритма действия, его структуры, осознание каждого шага. При выполнении упражнений на овладение умением необходимо требовать подробную запись и полное пояснение. Например, при овладении умением деления рациональных чисел следует подробно объяснять каждый шаг алгоритма: определение знака произведения, обращение модулей множителей в неправильные дроби, замену деления умножением на обратное делителю число, умножение дробей. Причем таких упражнений должно быть достаточно много, лишь после этого можно переходить к автоматизации умения. Автоматизация умения происходит, когда ученик в состоянии исключить промежуточные операции, при этом сложные ассоциации (А-В-С) заменяются простым (А-С).

На языке методики это означает, что, что после достаточного числа упражнений, выполняемых в развернутой форме, постепенно, с учетом индивидуальных особенностей обучаемых, необходимо учить их свертыванию промежуточных операций. При этом часть преобразований выполняется мысленно. Одной из основных причин ошибок учащихся является преждевременный переход к этому этапу формирования соответствующего умения. Например, учащиеся часто допускают ошибки при раскрытии скобок, перед которыми стоит знак минус, забывая сменить знак перед каждым слагаемым, заключенным в нее. Это объяснятся тем, что выделение (-1) в качестве множителя, стоящего перед скобкой, слишком рано было исключено из обязательного этапа соответствующего тождественного преобразования и заменено свернутой операцией – раскрытием скобок со сменой знака каждого слагаемого.

2а – 3b – (a+b+3) = 2a – 3b – 1a – 1b+3 = a – 4b+3

Специфика формирования алгоритмических навыков, а именно к ним относятся вычислительные навыки, такова, что формирование нового навыка идет на фоне старых, при этом часто используется перенос старых навыков на новые. Например, прочные навыки действий с натуральными числами облегчают усвоение алгоритмов действий с десятичными дробями. К сожалению, довольно часто старые навыки тормозят или даже мешают выработке новых. В психологии отрицательное воздействие одного навыка на другой называют интерференцией. Примеров интерференций (влияний старого навыка на новый) в математике много: решение уравнений с использованием зависимостей между компонентами и результатом арифметических действий после того, как уже известно правило переноса слагаемых из одной части уравнения в другую, отбрасывание нулей в произведении натуральных чисел после изучения действий над десятичными дробями и т.д. Наиболее значимыми причинами интерференции являются большая прочность ранее образованных связей и сходство в условиях, способах реализации старых и новых действий. Возможными средствами ослабления интерференции являются: акцентирование внимания на различиях между старым и новым действием, разнесением во времени изучение сходных алгоритмов, недопущение длительных перерывов в использовании важных навыков.

Страницы: 1 2 3 4

Другое о образовании:

Методика работы с наглядностями на уроках истории
Рассмотрим некоторые из видов средств наглядных пособий, предусмотренных выше изложенной классификацией. Знаток мелового рисунка B.C. Мурзаев был преподавателем истории и рисования. В своей книге «Рисунки на классной доске в преподавании истории», ставшей библиографической редкостью, он писал: «В э ...

Применение игр в формировании грамматического навыка
Эффективным приемом работы в становлении грамматического навыка являются игры, которые одновременно способствуют развитию речевой деятельности обучающихся. Учащиеся применяют осваиваемый языковой материал в ситуациях, характерных для окружающей их действительности. Существует множество методических ...

Краткий обзор программ, воспитывающих у дошкольников эмоциональную отзывчивость к прекрасному в природе
В настоящее время существует несколько программ, которые обращают особое внимание на воспитание у детей эмоциональной отзывчивости к прекрасному: Программа «Детство» под редакцией Т.И. Бабаевой, З.А. Михайловой. Программа «Семицветик» – авторы В. И. Ашиков, С. Г. Ашикова. Программа «Приобщение дете ...

Меню сайта

Copyright © 2018 - All Rights Reserved - www.edakam.ru